Module markov.data_models.experiment_recording
Classes
class AddExperimentHyperParametersRequest (experiment_id: str, hyper_parameters: Dict = <factory>)
-
AddExperimentHyperParametersRequest(experiment_id: str, hyper_parameters: Dict =
) Class variables
var experiment_id : str
var hyper_parameters : Dict
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str
class AddExperimentHyperParametersResponse (return_code: str, message: Optional[str] = '')
-
AddExperimentHyperParametersResponse(return_code: str, message: Optional[str] = '')
Ancestors
Class variables
var message : Optional[str]
var return_code : str
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str
class BinaryOperation (value, names=None, *, module=None, qualname=None, type=None, start=1)
-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var EQUALS : Final
var GREATER_EQUAL : Final
var GREATER_THAN : Final
var LESS_EQUAL : Final
var LESS_THAN : Final
var NOT_EQUAL : Final
class Experiment (name: str, model_id: str, project_id: str, notes: str = '', dataset_id: str = '', hyper_parameters: Dict = None, config: Dict = <factory>, package_requirements: Dict[str, str] = <factory>, python_version: str = '', summary: Optional[ExperimentSummaryRecord] = None)
-
Model class for storing Experiment in Markov
Attributes
name
:str
- The name of the experiments
model_id
:str
- The model that is used to run this experiment
notes
:str
- Any notes associated to the experiment (Optional)
dataset_id
:str
- The id of the dataset which has been used to run this experiments (Optional)
- project_id(str): Project this experiment belongs to
hyper_parameters
:dict
- The dictionary of hyper_parameters of the model used in the experiment
config
:dict
- Any additional metadata needed to represent the experiment
package_requirements
:dict
- The packages installed in the current environment used to run the experiment.
Class variables
var config : Dict
var dataset_id : str
var hyper_parameters : Dict
var model_id : str
var name : str
var notes : str
var package_requirements : Dict[str, str]
var project_id : str
var python_version : str
var summary : Optional[ExperimentSummaryRecord]
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def get_dict(self) ‑> Dict
def get_json(self) ‑> str
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str
class ExperimentAlert (condition: ExperimentAlertCondition, text: str)
-
Class for sending alerts when a condition is met during experiment tracking
condition: The condition which when met, a notification is sent to the current user text: The notification text which needs to be sent
Class variables
var condition : ExperimentAlertCondition
var text : str
Methods
def send_alert_on_condition(self, key: str, value: Any)
class ExperimentAlertCondition (metric_name: str, operation: BinaryOperation, metric_value: Any)
-
ExperimentAlertCondition(metric_name: str, operation: markov.data_models.experiment_recording.BinaryOperation, metric_value: Any)
Class variables
var metric_name : str
var metric_value : Any
var operation : BinaryOperation
Methods
def is_matched(self, key: str, value: Any)
class ExperimentBatchResponse (return_code: str, message: Optional[str] = '')
-
ExperimentBatchResponse(return_code: str, message: Optional[str] = '')
Ancestors
Class variables
var message : Optional[str]
var return_code : str
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str
class ExperimentMetadataResponse (recording_id: str, return_code: str, experiment_url: str = '', message: Optional[str] = '', create_date: str = '')
-
ExperimentMetadataResponse(recording_id: str, return_code: str, experiment_url: str = '', message: Optional[str] = '', create_date: str = '')
Class variables
var create_date : str
var experiment_url : str
var message : Optional[str]
var recording_id : str
var return_code : str
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def get_dict(self) ‑> Dict
def get_json(self) ‑> str
def ok(self)
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str
class ExperimentRecord (key: Any, value: Any, recording_id: str, is_aggregable: Optional[bool] = False, label: Optional[str] = '', workspace_id: Optional[str] = '')
-
Model class for storing Hyper parameter records - key value pair associated to a recording_id
Attributes
recording_id
:str
- The id associated with the Experiment Recording
is_agggregable
:bool
- To mark for the backend whether this value needs to be aggregated or not
label
:str
- Defines the type of the record - Values - metric/system (see: ExperimentRecordLabels)
Ancestors
Class variables
var is_aggregable : Optional[bool]
var label : Optional[str]
var recording_id : str
var workspace_id : Optional[str]
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def from_multi_message_dict(kv_pairs: Dict, recording_id: str) ‑> List[ExperimentRecord]
-
Converts a dictionary to a list of ExperimentRecords
Args
kv_pairs
- the dictionary with key value pair such that key is string
recording_id
- the recording for which we need to create this hyper-parameter record
Returns
List of ExperimentRecords
def list_to_json(list_of_records: List[ForwardRef('ExperimentRecord')]) ‑> str
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def set_label(self, label: str)
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str
class ExperimentRecordRegistrationResponse
-
ExperimentRecordRegistrationResponse()
class ExperimentRecordingCreateRequest (name: str, model_id: str, description: str = '', dataset_id: str = '', config: Dict = <factory>, hyper_parameters: Dict = <factory>)
-
ExperimentRecordingCreateRequest(name: str, model_id: str, description: str = '', dataset_id: str = '', config: Dict =
, hyper_parameters: Dict = ) Class variables
var config : Dict
var dataset_id : str
var description : str
var hyper_parameters : Dict
var model_id : str
var name : str
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def get_dict(self) ‑> Dict
def get_json(self) ‑> str
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str
class ExperimentSummaryRecord (training_loss: Optional[str] = '', validation_loss: Optional[str] = '', training_accuracy: Optional[str] = '', validation_accuracy: Optional[str] = '', number_of_epochs: Optional[str] = '', custom_fields: Dict[str, str] = <factory>)
-
Model class for storing the summary of an experiment in Markov
Class variables
var custom_fields : Dict[str, str]
var number_of_epochs : Optional[str]
var training_accuracy : Optional[str]
var training_loss : Optional[str]
var validation_accuracy : Optional[str]
var validation_loss : Optional[str]
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def get_dict(self) ‑> Dict
def get_json(self) ‑> str
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str
class ExperimentSystemMetricsKeys (value, names=None, *, module=None, qualname=None, type=None, start=1)
-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var CPU_PERCENT : Final
var GPU_LOAD : Final
var GPU_MEMORY_USED_IN_MB : Final
var GPU_MEMORY_USED_PERCENT : Final
var GPU_TEMPERATURE
var MEMORY_USED_MB : Final
var MEMORY_USED_PERCENT : Final
var PROCESS_THREADS : Final
class GetExperimentPackageRequirementsRequest (experiment_id: str)
-
GetExperimentPackageRequirementsRequest(experiment_id: str)
Class variables
var experiment_id : str
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def get_dict(self) ‑> Dict
def get_json(self) ‑> str
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str
class GetExperimentPackageRequirementsResponse (experiment_id: str, package_requirements: Dict[str, str] = <factory>, python_version: str = '', return_code: str = 'COMMAND_FAILED', message: Optional[str] = '', create_data: str = '')
-
GetExperimentPackageRequirementsResponse(experiment_id: str, package_requirements: Dict[str, str] =
, python_version: str = '', return_code: str = 'COMMAND_FAILED', message: Optional[str] = '', create_data: str = '') Class variables
var create_data : str
var experiment_id : str
var message : Optional[str]
var package_requirements : Dict[str, str]
var python_version : str
var return_code : str
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def get_dict(self) ‑> Dict
def get_json(self) ‑> str
def ok(self) ‑> bool
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str
class SendExperimentSummaryResponse (return_code: str, message: Optional[str] = '')
-
SendExperimentSummaryResponse(return_code: str, message: Optional[str] = '')
Ancestors
Class variables
var message : Optional[str]
var return_code : str
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str
class SetExperimentSummaryRequest (experiment_id: str, summary: ExperimentSummaryRecord)
-
SetExperimentSummaryRequest(experiment_id: str, summary: markov.data_models.experiment_recording.ExperimentSummaryRecord)
Class variables
var experiment_id : str
var summary : ExperimentSummaryRecord
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def get_dict(self) ‑> Dict
def get_json(self) ‑> str
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str
class StopRecordingResponse (return_code: str, message: Optional[str] = '')
-
StopRecordingResponse(return_code: str, message: Optional[str] = '')
Ancestors
Class variables
var message : Optional[str]
var return_code : str
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str
class UpsertExperimentPackageRequirementsRequest (experiment_id: str, package_requirements: Dict = <factory>)
-
UpsertExperimentPackageRequirementsRequest(experiment_id: str, package_requirements: Dict =
) Class variables
var experiment_id : str
var package_requirements : Dict
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str
class UpsertExperimentPackageRequirementsResponse (return_code: str, message: Optional[str] = '')
-
UpsertExperimentPackageRequirementsResponse(return_code: str, message: Optional[str] = '')
Ancestors
Class variables
var message : Optional[str]
var return_code : str
Static methods
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str