Module markov.api.utils.sampling_strategy
Classes
class AbsSamplingStrategy
-
Abstract class for enforcing sampling contract
Subclasses
Methods
def sample(self, df: pandas.core.frame.DataFrame, n: int = 10000, **kwargs) ‑> pandas.core.frame.DataFrame
class ClusterSampling
-
Abstract class for enforcing sampling contract
Ancestors
Methods
def sample(self, df: pandas.core.frame.DataFrame, n: int = 10000, **kwargs) ‑> pandas.core.frame.DataFrame
class EqualSplitSampling
-
Returned sample where each class has equivalent representation. For example in a dataset with two classes A (60%) and B(40%) if n samples are requested , for n/2 > number of samples of A and number of samples of B, we will return n/2 examples from class and n/2 example from class B. If num B or num A < n/2 samples returned are min(num A, num B)*2.
Ancestors
Methods
def sample(self, df: pandas.core.frame.DataFrame, n: int = 10000, **kwargs) ‑> pandas.core.frame.DataFrame
class SimpleRandomSampling
-
Implements contract from Random Sampling
Ancestors
Methods
def sample(self, df: pandas.core.frame.DataFrame, n: int = 10000, **kwargs) ‑> pandas.core.frame.DataFrame
class StratifiedSampling
-
Return the Samples in proportion of their target label distribution. This is broadly defined as stratified sampling
Ancestors
- AbsSamplingStrategy
- markov.api.utils.sampling_strategy._InnerHelperWeighted
Methods
def sample(self, df: pandas.core.frame.DataFrame, n: int = 10000, **kwargs) ‑> pandas.core.frame.DataFrame
class WeightedSampling
-
Sample distribution as per the probability distribution specified by the user. Class weights should sum to 1. If the class Weights do not sum to 1, exception would be thrown
Ancestors
Methods
def sample(self, df: pandas.core.frame.DataFrame, n: int = 10000, **kwargs) ‑> pandas.core.frame.DataFrame