Module markov.api.utils.disk_cache

Classes

class DiskCache (path: str)

Helper class that provides a standard way to create an ABC using inheritance.

Ancestors

  • abc.ABC

Subclasses

Methods

def clear_all(self)

Clears all the stored objects for the given cache Returns: void

def exists(self, key: str) ‑> bool

Check of the key exists in the cache. Returns true if it does else false

Args

key : str
unique identifier of the key

Returns

True of the key exists otherwise False

def get(self, key: str) ‑> ~T
def remove(self, key: str)
def save(self, key: str, value: ~T)

Save the object given by value with unique identifier key

Args

key : str
unique key identifier
value : Any
object to be stored

Returns

saved object

class ModelCache

Helper class that provides a standard way to create an ABC using inheritance.

Ancestors

Methods

def get(self, key: str) ‑> ~T

Get the model with the key, {key}, usually the key is the model_id

Args

key : str
unique identifier for the model to be fetched

Returns

pickle load version of the model

def remove(self, key: str)

Remove the artifact with the key from the disk

Args

key : str
artifact key to be removed from cache

Returns

void

def save(self, key: str, value: Any)

Save the object given by value with user provided key {key} in the cache

Args

key : str
unique identifier for the object to be saved on local cache
value : Any
model object (TBD)

Returns

void

Inherited members

class PandasDFCache

Cache to store the dataframe in the local disk for quick retrieval

Ancestors

Methods

def get(self, key: str) ‑> ~T
def remove(self, key: str)

Remove the key if it exists otherwise nothing will happen

Args

key : str
key to remove

Returns

void

def save(self, key, df: ~T)

Save the object given by value in the cached

Args

key : str
unique identifier to identify this dataframe (usually it's ds_id_segment_type for datasets)
df : pd.Dataframe
dataframe to store in the cache

Returns

void

Inherited members