Module markov.api.schemas.embedding_recording

Classes

class EmbeddingRecording (name: str, note: str = '', dataset_id: str = '')

The data model to store metadata for embeddings

Static methods

def create_from_dict(value: dict) ‑> EmbeddingRecording

Create this object from the serialized (dictionary) representation of this object where the key's are attributes and values are attribute values.

Args

value : Dict
Dictionary serialized value of this object.

Returns

EmbeddingRecording

def create_from_json(value: str) ‑> EmbeddingRecording

Create EmbeddingRecording object from serialized JSON.

Args

value : str
JSON string that is serialized representation of this object.

Returns

EmbeddingRecording object

def from_dict(kvs: dict | list | str | int | float | bool | None, *, infer_missing=False) ‑> ~A
def from_json(s: str | bytes | bytearray,
*,
parse_float=None,
parse_int=None,
parse_constant=None,
infer_missing=False,
**kw) ‑> ~A
def schema(*,
infer_missing: bool = False,
only=None,
exclude=(),
many: bool = False,
context=None,
load_only=(),
dump_only=(),
partial: bool = False,
unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]

Instance variables

var dataset_id : str
var name : str

details about this embedding run that might be relevant for the user

var note : str

The dataset id used for this embedding

Methods

def get_dict(self) ‑> dict
def get_json(self) ‑> str
def to_dict(self, encode_json=False) ‑> Dict[str, dict | list | str | int | float | bool | None]
def to_json(self,
*,
skipkeys: bool = False,
ensure_ascii: bool = True,
check_circular: bool = True,
allow_nan: bool = True,
indent: int | str | None = None,
separators: Tuple[str, str] | None = None,
default: Callable | None = None,
sort_keys: bool = False,
**kw) ‑> str