Module markov.api.schemas.embedding_recording
Classes
class EmbeddingRecording (name: str, note: str = '', dataset_id: str = '')
-
The data model to store metadata for embeddings
Class variables
var dataset_id : str
var name : str
-
details about this embedding run that might be relevant for the user
var note : str
-
The dataset id used for this embedding
Static methods
def create_from_dict(value: dict) ‑> EmbeddingRecording
-
Create this object from the serialized (dictionary) representation of this object where the key's are attributes and values are attribute values.
Args
value
:Dict
- Dictionary serialized value of this object.
Returns
EmbeddingRecording
def create_from_json(value: str) ‑> EmbeddingRecording
-
Create EmbeddingRecording object from serialized JSON.
Args
value
:str
- JSON string that is serialized representation of this object.
Returns
EmbeddingRecording object
def from_dict(kvs: Union[dict, list, str, int, float, bool, ForwardRef(None)], *, infer_missing=False) ‑> ~A
def from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) ‑> ~A
def schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Methods
def get_dict(self) ‑> dict
def get_json(self) ‑> str
def to_dict(self, encode_json=False) ‑> Dict[str, Union[dict, list, str, int, float, bool, ForwardRef(None)]]
def to_json(self, *, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Union[int, str, ForwardRef(None)] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) ‑> str