Module markov.api.recording.experiments.integrations.xgboost.xgboost_auto_record
Functions
def auto_record(name: str, notes: str = '', project_id: str = '', model_class: ModelClass = ModelClass.CLASSIFICATION, record_epoch_time: bool = True, **kwargs)
-
Automatically record your experiment with an xgboost model. This method needs to be called once before calling xgboost.train() or XGBModel.fit().
Args
name
- Name of the experiment
notes
- Notes for the experiment
project_id
- Project id of the project where experiment should reside
model_class
- type of model used for training - Classification, Regression etc. See markov.ModelClass
record_epoch_time
- boolean - to switch recording "time taken per epoch"
**kwargs:
def get_callback(params)
def patch_xgboost_instance(wrapped, instance, args, kwargs, callback_params)
def patch_xgboost_kwargs(wrapped, args, kwargs, callback_params)
def patched_fit(wrapped, instance, args, kwargs)