Module markov.api.mkv_constants
Classes
class AuthProviderType (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var AUTH0 : Finalvar MARKOV : Final
class Constants (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var CLI_VERSION : Finalvar COL_INDEXES : Finalvar COL_NAMES : Finalvar CREDENTIAL_ID : Finalvar DECREASING : Finalvar DF_ID : Finalvar DS_ID : Finalvar DS_NAME : Finalvar END_DATE : Finalvar FILTER : Finalvar FORCE_RECOMPUTE : Finalvar INFERENCE_RECORDS : Finalvar MKV_ARTIFACT_TYPE : Finalvar NAME : Finalvar NOTES : Finalvar NUM_RECORDS : Finalvar PATTERN_KEY : Finalvar RECORDING_ID : Finalvar REG_DATA : Finalvar RESPONSE : Finalvar RUN_ID : Finalvar SEGMENT_PATHS : Finalvar SEGMENT_TYPE : Finalvar SHOULD_ANALYZE : Finalvar START_DATE : Finalvar STATUS_ONLY : Finalvar TAGS : Finalvar TOP_N : Final
class CorrelationType (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var Kendall : Finalvar Pearson : Finalvar Spearman : Final
class DataCategory (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var Categorical : Finalvar Image : Finalvar Mixed : Finalvar Numerical : Finalvar OneHot : Finalvar Text : Finalvar TimeSeries : Final
class DataSourceFormat (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var ARROW : Finalvar CSV : Finalvar FEATHER : Finalvar JSON : Finalvar PARQUET : Finalvar PICKLE : Finalvar ZIP : Final
class DataSourceType (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var Dataframe : Finalvar Filepath : Finalvar S3 : Finalvar Snowflake : Final
class ExperimentRecordLabels (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var METRIC : Finalvar SYSTEM : Final
Static methods
def has_value(value)
class ExperimentRecordingMetrics (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var AVG_RUNNING_LOSS : Finalvar EPOCH_TIME : Finalvar LEARNING_RATE : Final
class MKVArtifactType (value, names=None, *, module=None, qualname=None, type=None, start=1)-
Contains Type of specific Artifacts recognized by MarkovML Platform
Ancestors
- enum.Enum
Class variables
var ALLvar Analysis-
Metrics associated with a given model.
var DataFamily-
Dataset contains the data_set and related metadata information
var DataSet-
Collection of models that follow certain characteristics/ solve specific type of inference problem. Example XFraudModelFamily_en-us contains all the models that have been created to classify XFraud in en-us domain
var Metrics-
A run is an execution by MarkovML
var Model-
An EDA associated with data_set or evaluation of a model
var ModelFamily-
An instance of a specific model and its associated meta data_set that is being trained and registered
var Run-
All artifacts identified by handlers.
class MKVRegistrationConfig (auth_token: str, base_url: str)-
MKVRegistrationConfig(auth_token: str, base_url: str)
Static methods
def from_dict(kvs: dict | list | str | int | float | bool | None, *, infer_missing=False) ‑> ~Adef from_json(s: str | bytes | bytearray,
*,
parse_float=None,
parse_int=None,
parse_constant=None,
infer_missing=False,
**kw) ‑> ~Adef schema(*,
infer_missing: bool = False,
only=None,
exclude=(),
many: bool = False,
context=None,
load_only=(),
dump_only=(),
partial: bool = False,
unknown=None) ‑> dataclasses_json.mm.SchemaF[~A]
Instance variables
var auth_token : strvar base_url : str
Methods
def to_dict(self, encode_json=False) ‑> Dict[str, dict | list | str | int | float | bool | None]def to_json(self,
*,
skipkeys: bool = False,
ensure_ascii: bool = True,
check_circular: bool = True,
allow_nan: bool = True,
indent: int | str | None = None,
separators: Tuple[str, str] | None = None,
default: Callable | None = None,
sort_keys: bool = False,
**kw) ‑> str
class MLModelClass (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var Classification : Finalvar Regression : Final
class ModelType (value, names=None, *, module=None, qualname=None, type=None, start=1)-
Defines the different types of Models supported by MarkovML
Ancestors
- builtins.str
- enum.Enum
Class variables
var REGISTERED_MANAGED : strvar REMOTE_API : strvar SCIKIT_LEARN_BINARY : str
class Quartile (value, names=None, *, module=None, qualname=None, type=None, start=1)-
Quartile constants. Q1 0-25, Q2 25+- 50, Q3 50+ - 75 , Q4 75+-100
Ancestors
- builtins.str
- enum.Enum
Class variables
var Q1 : Final-
Second quartile of the dataset
var Q2 : Final-
Third quartile of the dataset
var Q3 : Final-
Fourth Quartile of the dataset
var Q4 : Final
class RecordingMode (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var OFFLINE : Finalvar ONLINE : Final
class ReturnCode (...)-
str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str
Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.str() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding(). errors defaults to 'strict'.
Ancestors
- builtins.str
Class variables
var COMMAND_FAILED : Finalvar EXISTING_RECORD : Finalvar INSUFFICIENT_CREDITS : Finalvar INVALID_INPUT : Finalvar MISSING_VALUE : Finalvar NAME_CONFLICT : Finalvar NOT_SUPPORTED : Finalvar OK : Finalvar PARTIAL_UPDATE : Finalvar UNAUTHORIZED : Finalvar UNSUPPORTED_ANALYSIS : Final
class RunType (value, names=None, *, module=None, qualname=None, type=None, start=1)-
What type of run is this
Ancestors
- builtins.str
- enum.Enum
Class variables
var DATA_ANALYSIS : Final-
RunType for comparing a data_analyzer set with one or more data_analyzer sets
var DATA_COMPARISON : Final-
RunType to execute the model evaluation run
var DATA_EVALUATOR_RELIABILITY : Finalvar MODEL_COMPARISON : Final-
RunType for data_analyzer quality reliability run
var MODEL_EVALUATION : Final-
RunType to execute the model comparison run
class SamplingStrategyType (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var StratifiedSampling : Finalvar WeightedSampling : Finalvar balancedSampling : Finalvar clusterSampling : Finalvar randomSampling : Final
class SegmentType (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var Test : Finalvar Train : Finalvar Unknown : Finalvar Validate : Final
class StorageFormatType (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var CSV : Finalvar FEATHER : Finalvar PARQUET : Finalvar TSV : Final
class StorageType (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var MKV : Finalvar S3 : Final
class WorkflowMode (value, names=None, *, module=None, qualname=None, type=None, start=1)-
An enumeration.
Ancestors
- builtins.str
- enum.Enum
Class variables
var EXTERNAL_CLOUD_STORAGE : Finalvar LOCAL_FILE_UPLOAD : Final